Выбор материалов для элементов конструкции
При проектировании СЛА очень важной задачей является правильный выбор материалов для элементов его конструкции. Кроме традиционных авиационных материалов, таких как алюминиевые и титановые сплавы, конструкционные и легированные стали, широкое применение находит древесина. Особого внимания заслуживают вопросы применения композиционных материалов, в частности текстолита, стеклотекстолита, древесных пластиков и пенопластов.
Важными характеристиками любого материала являются его прочность и твердость, именно эти характеристики являются определяющими в общем машиностроении. При выборе материала для элементов летательного аппарата следует стремиться к получению наименьшей массы при заданной прочности и достаточной жесткости конструкции. Наиболее информативной характеристикой свойств материала, подбираемого для элементов конструкции, работающих на растяжение и сжатие, может служить отношение его предела прочности Од к плотности, называемое удельной прочностью материала. Чем больше удельная прочность материала, тем меньшую массу может иметь элемент конструкции, работающий на растяжение или сжатие.
При выборе материала для элемента с заранее заданной формой (а иногда и некоторыми размерами) поперечного сечения (рис. 3. 1),
Рис 3.1 Сечения силовых элементов работающего на изгиб, продольный изгиб или кручение, необходимо использовать выражения, определяющие удельную прочность при этих видах нагрузок, приведенные в табл. 3. 1.
Таблица 3.1 Выражение для удельной прочности материалов при различных видах нагружения
Большой интерес представляет сравнительный анализ удельной прочности различных конструкционных материалов. В табл. 3. 2 приведены результаты вычислений удельной прочности древесных пород (сосны, ясеня), высокопрочных алюминиевых сплавов (Д-16, В-95) и нормализованной легированной стали ЗОХГСА.
Таблица 3.2 Характеристики конструкционных материаловИз таблицы видно, что при работе элемента на растяжение древесина по удельной прочности не уступает высокопрочным алюминиевым сплавам и даже легированной стали. А удельная прочность древесины при изгибе, при отсутствии ограничений по размерам сечения элементов, намного превышает удельную прочность алюминиевых сплавов и, тем более, стали. Иначе обстоит дело при работе материала на сжатие. При этом виде нагружения удельная прочность древесины более чем в два раза ниже удельной прочности алюминиевых сплавов и легированной стали.
Исходя из удельной прочности материалов, сталь, даже легированная, при обычных температурах, не имеет преимуществ перед деформируемыми высокопрочными алюминиевыми сплавами. С учетом сложностей механической и термической обработки сталь при создании СЛА применяется ограниченно, в основном для стыковочных узлов силовых элементов.
Наибольшую удельную прочность из рассматриваемых материалов имеет высокопрочный алюминиевый сплав В95-2. Однако при его применении следует иметь в виду, что он "боится" концентраторов напряжения, которыми могут быть отверстия, надрезы, резкие переходы профиля и даже глубокие царапины. С целью обеспечения заданной прочности элементов конструкции, выполненных из этого сплава, необходимо увеличивать коэффициент безопасности. В результате масса элемента из сплава В95-2 примерно равна массе того же элемента, выполненного из хорошо зарекомендовавшего себя сплава Д-16Т.
Высокие прочностные характеристики имеют алюминиевые сплавы (табл. 3. 3) АК4, АК6, АК8. Мягкие алюминиевые сплавы АМц, АМг2, АМг3 и т. п. целесообразно использовать только в несиловых элементах, требующих сварки, например топливных баках,
Таблица 3.3 Механические и технологические свойства алюминиевых сплавов
Литейные алюминиевые сплавы по механическим свойствам существенно уступают деформируемым и используются для изготовления узлов силовой установки и различного, рода кронштейнов, не несущих больших нагрузок.
Древесина как конструкционный материал в современном самолетостроении вытеснена металлами и композиционными материалами. Объясняется это такими ее недостатками, как пожароопасность, недолговечность и нетехнологичность при массовом производстве. При создании единичных образцов СЛС применение древесины выгодно, так как она достаточно легко обрабатывается, а изготовление деревянных конструкций не требует дорогостоящей оснастки,
По удельной прочности все породы дерева, приведенные в табл. 3. 4, за исключением липы, почти равнозначны.
Таблица 3.4 Механические свойства древесиныОднако наибольшее применение для изготовления силовых элементов конструкции находят сосна, ель, ясень. У дуба худшее, чем у ясеня, скалывание вдоль волокон, что существенно затяжеляет заделку элемента. Бук склонен к сильному короблению при высыхании и при любом изменении влажности, поэтому используется в основном в виде шпона при изготовлении элементов конструкции методом склеивания. Липу как достаточно легкий материал выгодно использовать для элементов, не подверженных большим и особенно сосредоточенным нагрузкам.
Больший выигрыш в массе конструкции может дать широкое применение композиционных материалов: текстолита, стеклотекстолита и особенно угле - и боропластиков. Слоистые пластики могут использоваться для обшивки крыла и фюзеляжа, стенок лонжеронов, изготовления нервюр, шпангоутов и различных перегородок. Исходя из условия обеспечения необходимой жесткости, выигрыш от применения пластиков в конструкции СЛА намного больше, чем на обычных самолетах.
Механические свойства наиболее доступных композиционных материалов приведены в табл. 3. 5.
Таблица 3.5 Механические свойства наиболее доступных композиционных материалов
Массу частей СЛА можно существенно снизить за счет использования трехслойных конструкций, заполнителем которых являются пенопласты-газонаполненные пластические массы ячеистой структуры. Плотность большинства пенопластов (табл. 3. 6) почти на порядок ниже плотности древесины. Такие марки пенопластов, как ПС-1 и ПС-4, на основе полистирола, хорошо режутся и обрабатываются горячей нихромовой проволокой. Почти все приведенные в табл. 3. 6 пенопласты хорошо обрабатываются режущими инструментами, а ПХВ-1 и ПХВ-3 - полируются с помощью шлифовальной бумаги.
Таблица 3.6 Механические свойства пенопластов
Многие элементы конструкции могут быть изготовлены из стеклоткани или шпона, пропитанных эпоксидным компаундом. Такие конструкции, как правило, получаются прочными, жесткими и достаточно легкими.
по материалам: П.И.Чумак, В.Ф Кривокрысенко "Расчет и проектирование СЛА"